skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Alvin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hilgetag, Claus C (Ed.)
    The mouse brain’s activity changes drastically over a day despite being generated from the same neurons and physical connectivity. To better understand this, we develop an experimental-computational pipeline to determine which neurons and networks are most active at different times of the day. We genetically mark active neurons of freely behaving mice at four times of the day with a c-Fos activity-dependent TRAP2 system. Neurons are imaged and digitized in 3D, and their molecular properties are inferred from the latest brain spatial transcriptomic dataset. We then develop a new computational method to analyze the network formed by the identified active neurons. Applying this pipeline, we observe region and layer-specific activation of neurons in the cortex, especially activation of layer five neurons at the end of the dark (wake) period. We also observe a shift in the balance of excitatory (glutamatergic) neurons versus inhibitory (GABAergic) neurons across the whole brain, especially in the thalamus. Moreover, as the dark (wake) period progresses, the network formed by the active neurons becomes less modular, and the hubs switch from subcortical regions, such as the posterior hypothalamic nucleus, to cortical regions in the default mode network. Taken together, we present a pipeline to understand which neurons and networks may be most activated in the mouse brain during an experimental protocol, and use this pipeline to understand how brain activity changes over the course of a day. 
    more » « less
    Free, publicly-accessible full text available November 13, 2026
  2. Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO’s, AdVirgo’s and KAGRA’s fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (−3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections. 
    more » « less
  3. null (Ed.)